历史图像视频智能着色系统设计与实现
|
Historical image video intelligent coloring software design and implementation
|
投稿时间:
|
2022/12/20 0:00:00
|
DOI:
|
|
中文关键词:
|
深度学习;神经网络;图像着色;微信小程序;全栈式开发
|
英文关键词:
|
deep learning; Neural Networks;image colorization; wechat applet; full stack development
|
基金项目:
|
|
姓名
|
单位
|
毕慧敏
|
北京电子科技学院
|
金鑫
|
北京电子科技学院
|
周子寅
|
北京电子科技学院
|
李忠兰
|
北京电子科技学院
|
|
点击数:761
|
下载数:741
|
中文摘要:
为实现历史图像和视频彩色化问题,将合理、正确的颜色添加到灰度图像和视频中,利用着色评价指标对灰度图像视频着色算法进行分析,计算并分析神经网络的着色性能。设计并实现一个历史图像视频智能着色系统,前端以微信小程序为应用设计的前端展示界面,后端以PHP-Laravel-MySQL为架构的服务器和数据库框架,将着色算法与后端相连接,接收上传图像进行自动着色处理,接收视频进行分帧处理,对多帧着色再拼接还原,由前端显示。最终实现一个具有前端、后端和算法的全栈式开发架构,结合实例,证明了该系统在着色方面的有效性和便捷性。
|
英文摘要:
In order to realize the problem of colorization of historical images and videos, added the reasonable and correct colors to grayscale images and videos. The coloring evaluation index is used to analyze the gray-scale image video coloring algorithm, and analyze the coloring performance of the neural network by the index calculation. Design and implement a historical image video intelligent coloring system and a full-stack development architecture with front-end, back-end, and algorithms is realized finally.The front-end uses WeChat applet as the front-end display interface, and the back-end uses PHP-Laravel-MySQL as the architecture of the server and database framework. The coloring algorithm is connected to the back-end to receive uploaded images, then coloring automatically. Divided the received videosinto frames, and multiple frames are colored and then spliced and restored, and displayed by the front end.Combined with examples, it proves the effectiveness and convenience of the design in terms of coloring.
|
|
参考文献:
|