稀疏直线阵列优化设计算法综述
|
Review of algorithms for designing sparse linear arrays
|
投稿时间:
|
2021/8/20 0:00:00
|
DOI:
|
|
中文关键词:
|
稀疏直线阵列;随机搜索;傅里叶变换;凸优化;矩阵分解;压缩感知
|
英文关键词:
|
sparse linear arrays; random search; Fourier transform; convex optimization; matrix decomposition; compressed sensing
|
基金项目:
|
国家自然科学基金项目(61971412)
|
姓名
|
单位
|
黎子皓
|
中国科学院大学
|
郝程鹏
|
中国科学院声学研究所
|
闫晟
|
|
|
点击数:832
|
下载数:1378
|
中文摘要:
稀疏直线阵列可以有效降低天线系统的复杂性和成本,其优化设计是阵列信号处理领域近年来的研究热点之一。该文在介绍阵列波束方向图模型基础上,将稀疏直线阵优化设计算法归为随机搜索、傅里叶变换、凸优化、矩阵分解和压缩感知五类,对这五类算法的研究进展进行了综述,并对稀疏线阵优化设计的研究趋势进行了展望。
|
英文摘要:
The sparse linear array can effectively reduce the complexity and cost of the antenna system, and its optimal design is one of the research hotspots in the field of array signal processing in recent years. Based on the introduction of the array beam pattern model, this paper classifies the sparse linear array optimization design algorithm into five categories: random search, Fourier transform, convex optimization, matrix decomposition, and compressed sensing. The research progress of these five categories is also carried out, and the research trend of designing sparse linear array design is also summarized in this paper.
|
|
参考文献:
|