基于步态信号与脑电信号的脊髓损伤大鼠运动信息分析
Analysis of movement information of rats with spinal cord injury based on gait signal and EEG signal
投稿时间: 2021/4/20 0:00:00
DOI:
中文关键词: 步态分析;数据分析;主成分分析;脊髓损伤;脑电数据;短时傅里叶变换;
英文关键词: gait analysis; data analysis; Principal Component Analysis; spinal cord injury; EEG data; short‑term Fourier transform;
基金项目: 媒体融合与传播国家重点实验室(中国传媒大学)开放课题No. MCC2020KF002
姓名 单位
韩程韡 北京航空航天大学自动化科学与电气工程学院
李想 北京航空航天大学自动化科学与电气工程学院
石岩 北京航空航天大学自动化科学与电气工程学院
王一轩 北京航空航天大学自动化科学与电气工程学院
点击数:578 下载数:1649
中文摘要:

通过对大鼠的步态及脑电信息分析来研究人类脊髓损伤模型已广泛应用。在处理信息时数据冗余、相关性大及直观性不佳 等问题一直存在于步态信息分析中。本文以大鼠为模型,在获取其步态数据后,通过对其进行步态信息预处理及可视化处理。本 文通过用主成分分析法对三维大鼠步态数据进行降维处理,降维至二维后,减少数据特征指标和指标间的相关性,并最大程度保 留数据信息。并且利用巴特斯沃滤波器与切比雪夫滤波器分别进行滤波对比结果,利用短时傅里叶分析方法对滤波结果进行分 析,对比分析两种情况下的数据,得到更多关于脊髓损伤的运动变化信息以用于后续研究。

英文摘要:

It has been widely used to study the human spinal cord injury model by analyzing the rat′s gait and EEG information. When processing information, problems such as data redundancy, high relevance and poor intuition have always existed in the analysis of gait information. In this paper, rats are used as a model. After obtaining the gait data, the gait information is preprocessed and visualized. This paper uses principal component analysis to reduce the dimensionality of the three‑dimensional rat gait data. After the dimensionality is reduced to two‑dimensional, the correlation between the data characteristics and indicators is reduced, and the data information is retained to the greatest extent. And use the Buttersworth filter and Chebyshev filter to compare the results of the filtering, use the short‑time Fourier analysis method to analyze the filtering results, compare and analyze the data in the two cases, and get more about the spinal cord injury. Change information for follow‑up research.

参考文献: