基于神经网络的后均衡方法在水下可见光通信中的应用
Application of neural network based post equalization methods in underwater visible light communication
投稿时间: 2021/4/20 0:00:00
DOI:
中文关键词: 水下可见光通信;非线性失真;后均衡;神经网络
英文关键词: underwater visible light communication; nonlinear distortion; post equalization; neural network
基金项目: 国家重点研发计划基金(No.2017YFB0403603);国家自然科学基金杰青项目(No.61925104)
姓名 单位
李国强 复旦大学通信科学与工程系
王超凡 复旦大学通信科学与工程系
李忠亚 复旦大学通信科学与工程系
邹鹏 复旦大学通信科学与工程系
胡昉辰 复旦大学通信科学与工程系
迟楠 复旦大学通信科学与工程系
点击数:624 下载数:1618
中文摘要:

随着人类进一步推进对海洋的探索,人们对水下通信技术提出更高的要求。水下可见光通信(UVLC)具有高速、低延迟和 高保密性的优点,吸引了广大研究者的关注。然而,在水下可见光通信中,水下信道环境很复杂,湍流、漫射、散射等因素严重影 响信号传输的质量,同时,由器件引起的非线性失真限制着系统的性能。神经网络能够拟合复杂的非线性问题,开始被应用于 可见光通信的信号均衡中。本文介绍了基于神经网络的后均衡方法在水下可见光通信中的应用,对比分析了DNN、DBMLP和 TFDNet三种网络在非线性均衡方面的性能,并且讨论了不同计算复杂度对三者的影响,为在实际应用中采用不同的均衡方法 提供参考。

英文摘要:

Great demands have been placed on underwater communication technology as human mankind keep on exploring the ocean. With the advantages of high speed, low latency and confidentiality, underwater visible light communication (UVLC) has attracted more and more attention. However, the underwater environments are complex, and scattering, turbulence and diffusion will affect the quality of the signal. Besides, nonlinear distortion caused by the system devices deteriorates the system performance of UVLC. As neural network has ability to solve complex nonlinear problem, it is employed to finish signal equalization in visible light communication. This paper introduces the application of neural network‑based post equalization methods in UVLC, and then analyzes the performance of DNN, DBMLP and TFDNet in terms of nonlinear equalization. The influence of different computational complexity on these methods are also discussed. We wish this paper could provide some reference for selecting different equalization methods in practical application.

参考文献: