计算广告中的点击率和转化率预测研究
|
Recent research on the click‐through rate and conversion rate prediction in computational advertising
|
投稿时间:
|
2021/4/20 0:00:00
|
DOI:
|
|
中文关键词:
|
计算广告;深度学习;广告点击率;广告转化率
|
英文关键词:
|
computational advertising; deep learning;advertising Click Through Rate(CTR); advertising
conversion rate
|
基金项目:
|
|
姓名
|
单位
|
颜金尧
|
中国传媒大学媒体融合与传播国家重点实验室
|
张海龙
|
中国传媒大学媒体融合与传播国家重点实验室
|
苏毓敏
|
北京沃东天骏信息技术有限公司
|
|
点击数:1082
|
下载数:3660
|
中文摘要:
计算广告中的点击率与转化率是广告效果的重要指标,具有重要意义。随着深度神经网络的广泛应用,传统基于机器学
习算法的点击率与转化率预测模型逐渐被深度学习模型取代。基于深度神经网络的模型能够从多源信息中提取用户的兴趣特
征和时延关系,进而对用户的未来行为做出预测,进一步预测广告效果。本文将总结分析点击率和转化率预测相关研究进展,
并总结介绍我们最新的研究成果。
|
英文摘要:
The click‑through rate and conversion rate in an computational advertisement is an important
indicator of the effectiveness of the advertisement, which is of great significance. With the widespread
application of deep neural networks, traditional click‑through rate and conversion rate prediction models
based on machine learning algorithms are gradually being replaced by deep learning models. The model
based on deep neural network can extract the user′s interest characteristics and time delay relationship
from multi‑source information, and then make predictions on the user′s future behavior, and further
predict the effect of advertising. This article will summarize and analyze the research progress related to
click‑through rate and conversion rate prediction, and summarize our latest research results.
|
|
参考文献:
|